Assessing the Characteristic of Bands Combination in Log Ratio Change Detection Using SAR Imagery
Abstract
Keywords
References
J. Zhao, Z. Xiong, and X. X. Zhu, “UrbanSARFloods: Sentinel-1 SLC-based benchmark dataset for urban and open-area flood mapping,” in 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), IEEE, Jun. 2024, pp. 419–429. doi: 10.1109/CVPRW63382.2024.00047.
Z. Wang, C. Zhang, and P. M. Atkinson, “Combining SAR images with land cover products for rapid urban flood mapping,” Front. Environ. Sci., no. October, pp. 1–12, 2022, doi: 10.3389/fenvs.2022.973192.
M. Siddique and T. Ahmed, “CCD-Conv1D: A deep learning based coherent change detection technique to monitor and forecast floods using Sentinel-1 images,” Remote Sens. Appl. Soc. Environ., vol. 37, pp. 1–17, 2025, doi: 10.1016/j.rsase.2024.101440.
D. Amitrano, G. Di Martino, A. Di Simone, and P. Imperatore, “Flood detection with SAR : A review of techniques and datasets,” Remote Sens., vol. 16, no. 656, pp. 1–38, 2024, doi: https://doi.org/10.3390/rs16040656.
L. Selmi, “Flood mapping using the Sentinel-1 imagery and the ESA SNAP S1 Toolbox,” 2021.
F. Filipponi, “Sentinel-1 GRD preprocessing workflow,” in 3rd International Electronic Conference on Remote Sensing, MDPI, 2019, p. 4. doi: 10.3390/ecrs-3-06201.
A. Braun, Sentinel-1 toolbox time-series analysis with Sentinel-1. SKYWATCH ESA, 2021.
J. Lu and L. Veci, Microwave toolbox change detection with Sentinel-1 Sentinel GRD product. SKYWATCH ESA, 2025.
G. Schumann, L. Giustarini, A. Tarpanelli, B. Jarihani, and S. Martinis, “Flood modeling and prediction using earth observation data,” Surv. Geophys., vol. 44, no. 5, pp. 1553–1578, 2023, doi: 10.1007/s10712-022-09751-y.
F. Lang et al., “Flood mapping of Synthetic Aperture Radar ( SAR ) imagery based on semi-automatic thresholding and change detection,” Remote Sens., vol. 16, no. 2763, pp. 1–18, 2024, doi: https://doi.org/10.3390/ rs16152763.
J. Slesinski, D. Wierzbicki, and M. Kedzierski, “Application of multitemporal change detection in radar satellite imagery using REACTIV-based method for geospatial intelligence,” Sensors, vol. 32, no. 4922, pp. 1–26, 2023, doi: https://doi.org/10.3390/ s23104922.
T. A. Gasica, F. Bioresita, and A. Murtiyoso, “Identification of temporary surface water using Sentinel-1 SAR data, case study: Sentani flash flooding, Indonesia,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XLIII-B3-2, pp. 55–59, 2020, doi: https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-55-2020.
I. Prasasti, I. Carolita, A. E. Ramdani, and I. Risdiyanto, “The study of ALOS PALSAR data application for soil moisture estimation,” vol. 9, no. 2, pp. 102–113, 2012.
N. Bhogapurapu, S. Dey, S. Homayouni, A. Bhattacharya, and Y. S. Rao, “Field-scale soil moisture estimation using sentinel-1 GRD SAR data,” Adv. Sp. Res., vol. 70, pp. 3845–3858, 2022, doi: https://doi.org/10.1016/j.asr.2022.03.019.
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Sriwijaya Journal of Environment

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.












